Short-term Electrical Load Forecasting Using Neuro-Fuzzy Model with Error Compensation

نویسنده

  • Bo-Hyeun Wang
چکیده

This paper proposes a method to improve the accuracy of a short-term electrical load forecasting (STLF) system based on neuro-fuzzy models. The proposed method compensates load forecasts based on the error obtained during the previous prediction. The basic idea behind this approach is that the error of the current prediction is highly correlated with that of the previous prediction. This simple compensation scheme using error information drastically improves the performance of the STLF based on neuro-fuzzy models. The viability of the proposed method is demonstrated through the simulation studies performed on the load data collected by Korea Electric Power Corporation (KEPCO) in 1996 and 1997.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrical Load Forecasting using Adaptive Neuro-Fuzzy Inference System

Electrical load forecasting is well-known as one of the most important challenges in the management of electrical supply and demand and has been studied extensively. Electrical load forecasting is conducted at different time scales from short-term, medium-term and long-term load forecasting. Adaptive neuro-fuzzy inference system is a model that combines fuzzy logic and adaptive neuro system and...

متن کامل

Neuro-Fuzzy Approaches for Forecasting Electrical Load Using Additional Moving Average Window Data Filter on Takagi-Sugeno Type MISO Networks

The paper describes a Neuro-fuzzy approach with additional moving average window data filter and fuzzy clustering algorithm that can be used to forecast electrical load using the Takagi-Sugeno (TS) type multi-input single-output (MISO) neurofuzzy network efficiently. The training algorithm is efficient in the sense that it can bring the performance index of the network, such as the sum squared ...

متن کامل

Short term load forecast by using Locally Linear Embedding manifold learning and a hybrid RBF-Fuzzy network

The aim of the short term load forecasting is to forecast the electric power load for unit commitment, evaluating the reliability of the system, economic dispatch, and so on. Short term load forecasting obviously plays an important role in traditional non-cooperative power systems. Moreover, in a restructured power system a generator company (GENCO) should predict the system demand and its corr...

متن کامل

Prediction Intervals for Short-Term Load Forecasting Neuro-Fuzzy Models

In the paper the problem of estimation of the prediction intervals (error bars) for the family neuro-fuzzy Short-Term Load Forecasting (STLF) models is discussed. We investigate two neuro-fuzzy networks: Fuzzy Basis Function (FBF) Networks, and linear neuro-fuzzy model with Tagagi-Sugeno reasoning. The paper contains comparison of selected most important methods for error bars calculation (anal...

متن کامل

Efficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks

Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Fuzzy Logic and Intelligent Systems

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2009